Exploiting the advantages of both supervised and unsupervised learning

The potential benefits of AI in mineral exploration are staggeringly large, yet its application is far from simple. In mineral deposit targeting, explorers are trying to identify the location of ore deposits at the core of a very complex system. Evidence of the deposit footprint must be assembled from interpretation of subtle alteration effects, for example, that may extend kilometres from the target. Meeting this challenge requires as much focus on how the problem is set up for generating AI predictive models as on the AI methods themselves. This is where deep domain knowledge and a mining industry-specific, supporting computational framework is required.

We have applied machine learning as part of custom solutions to complex exploration and geotechnical problems since 2015. Our advanced geological modelling and geophysical inversion tools give us the capability to create a fully integrated interpretation, capturing all the relevant features in a single earth model, as input to machine learning algorithms. This makes for sound feature engineering, a key success factor for the application of AI to mineralized system targeting.

Case study: Radiometric alteration footprinting in IOCG environment, Mount Dore project area, AU.

In sparse data or grassroot environments, it is useful to be able to quickly identify alteration footprints of IOCG mineralization. In the case of the Mount Dore region, we tested whether it would be possible to identify the alteration footprint of IOCG deposits using airborne magnetic and radiometric data as a starting point. Using four features and a hierarchical clustering (unsupervised learning) approach, we tested the ability to generate proxies for the mass balance of potassium and uranium linked to alteration effects. The clustering method enabled the generation of groups of data points with similar magnetic, potassium, thorium, and uranium signatures, which exhibit remarkable correspondence to the geological map. Once the groups were established, a 3D regression was used to estimate the expected potassium and uranium signatures for each group of points. Then, a residual value was calculated and used as a proxy for mass balance of both elements. For example, areas with excess potassium were established by comparing the expected potassium for the rock type (data group) to the measured values; they are then considered as being enriched in potassium by alteration processes. Both the potassium and uranium residuals are then combined to produce an alteration map for IOCG deposit footprints. Areas of both potassium and uranium enrichment are considered prospective. The approach performed quite nicely at finding already known deposits in the Mount Dore area.

Upper row represents the radiometric and magnetic survey points. The middle row shows the resulting dendrogram from the hierarchical clustering together with the grouped point clouds in the K, Th and U space. Last row left image shows the resulting clustered data compared to the geological map on the right.
©2010 Department of Natural Resources and Mines, Queenland. All rights reserved

Upper row shows the estimated residual values for both K and U in the data space. The last row shows the alteration heat map on the left and alteration footprint map with known deposits on the right.
©2010 Department of Natural Resources and Mines, Queenland. All rights reserved

Jean-Philippe is our Director of Global Consulting. He brings 10 years of mineral exploration experience including expertise in geostatistics, structural, geological, and geochemical modelling and interpretation. He is skilled in the application of machine learning to overcome geological challenges and with new methods to reduce interpretational risks with geological data. He has a wide range of experience in mineral resource estimation for precious metals, base metals and industrial minerals across diverse geological environments around the world. He obtained an MSc from Laval University. Jean-Philippe is based in Quebec-City.

John McGaughey – President

John is the founder and President of Mira Geoscience. He has extensive mining industry experience focusing on quantitative, multi-disciplinary 3D and 4D interpretation for mineral exploration and geotechnical decision support. He currently leads our technology strategy and our geotechnical business. Prior to founding Mira Geoscience in 1999, he spent 10 years at the Noranda Technology Centre as a Senior Scientist in their rock mechanics group. He obtained an MSc in geological engineering and a PhD in geophysics from Queen’s University. John is based in Montreal.

Latest news

Software releases
January, 15 2019

Geoscience INTEGRATOR AI for exploration

Geoscience INTEGRATOR, the missing AI link for exploration. This unique web-based data management system is designed...
Read more
Case studies
March, 29 2015

Using predictive modelling in mineral exploration

We carried out targeting work for IOCG-style mineralisation in the Mt Dore area of QLD, Australia. We produced a 3D model and predictive exploration map...
Read more
Software tips
April, 01 2020

Clipping isovalues and sections

In Geoscience ANALYST you can clip isovalues and sections by volume using the free visualization tools to focus on areas of interest in any block model...
Read more
Software tips
April, 03 2020

Using hot keys

Use hot keys in GOCAD Mining Suite to optimize your experience to help navigate the interface and execute commands more quickly and easily. Try them out!
Read more
Geoscience ANALYST
March, 25 2020

Using SimPEG in Geoscience ANALYST

Past event, view here or via our YouTube channel...
Read more
Software tips
March, 31 2021

15 tips in 15 minutes

15 Geoscience ANALYST tips on advanced visualization and knowledge sharing...
Read more
Software tips
March, 01 2021

Sections movies

In GOCAD Mining Suite, you can create a section animation by specifying which section plane you want to visualize...
Read more
Software tips
January, 17 2022

No-data values on import templates

In Geoscience INTEGRATOR, you can prevent importing no-data value strings by providing a general NDV to be applied to all properties of the template...
Read more
Software tips
May, 03 2021

Rock reclassification editor

In GOCAD Mining Suite, you can simplify logging codes for modelling projects and data management using the Rock reclassification editor...
Read more
Software tips
April, 13 2020

Quick selection search tool

In Geoscience INTEGRATOR we added a search box to help you find objects lists such as drillholes, samples, or stations that often have thousands of items...
Read more
Software tips
January, 02 2019

Creating surfaces from points

With Geoscience ANALYST Pro module, you can create surfaces from any points imported in your workspace...
Read more
Case studies
December, 05 2019

Rapid and accurate mapping

We explain how automated generation of alteration maps using radiometric data is well-suited to large-footprint mineral systems...
Read more

Please contact our team for additional information about our products and services